ACOUSTIC CONTROL SYSTEMS

Ultrasonic transducer S1823

DATASHEET

Intended use

Dry point contact ultrasonic transducers S1823 with wave type switching and a are used to perform ultrasonic inspections of various non-metallic materials and products to determine their physical and mechanical properties. The transducers are regularly used as a transmitter-receiver couple.

Type of transducer:	Dry-point-contact	
Type of generated wave mode:	Longitudinal or	
	shear-horizontal	
Special properties:	Couplant-free operation	
Nominal frequency:	120 kHz	
Electric capacity of the piezoelectric element:	1.400 ± 200 pF	
Maximum excitation pulse voltage, V:	400 V	nuis 🖌
Connector type:	OSMT or LEMO00	
Overall dimensions:	11x22.6 mm	
Weight:	14 gr	

Measurement conditions and equipment used

Temperature 25℃, rel. humidity 43%

The method of passing of the ultrasonic waves through a tapered sample from fluoroplastic is used. The tested transducer operates in the transmission mode. As an ultrasonic pulse receiver, a broad-band single-crystal piezoelectric transducer with the operating frequency 5 MHz and effective aperture 10 mm is used.

Generator transmitting signal: half-sine video pulse with 200 V amplitude and 2.0 mcs duration time at the -20 dB level from the maximum.

Receiving path parameters: the integrating amplifier AKS310 is used. The amplification is 400 at 100 kHz frequency, the band 2 is 250 kHz and the input impedance is 40 kOhm.

In the longitudinal wave generation and receiving mode, the piezoelectric elements of the tested transducer are connected in parallel and co-phasal. In the shear wave mode, they are connected antiphasal via the transformer with the interrupted ferrite core, the transformation ratio is 1:1 and the inductivity of each coil is 20 mH.

Excitation scheme for longitudinal and shear wave generation

ACOUSTIC CONTROL SYSTEMS

Measured characteristics in the longitudinal wave mode

Signal parameters

Maximum half-wave amplitude of the pulse, mV	$AL_{max} = 1.9$	Lower band frequency at the - 3 dB level, kHz	FL ₁ = 110
Pulse duration at the -14 dB, msec	тL _{14d} в = 170	Upper band frequency at the - 3 dB level, kHz	$FL_2 = 144$
Maximum spectrum frequency, kHz	FL _{max} = 127	Average band frequency at the -3 dB level, kHz	FL _c = 127
Relative frequency band at the -3 dB level, %	PL _{3dB} = 26.9	Average compound band frequency at the -3 dB level, kHz	FL _g = 126

Measured characteristics in the shear wave mode

Signal parameters

Maximum half-wave amplitude of the pulse, mV	$AS_{max} = 2.3$	Lower band frequency at the -3 dB level, kHz	FS ₁ = 95.2
Pulse duration at the -14 dB, msec	тS _{14dB} = 200	Upper band frequency at the -3 dB level, kHz	FS ₂ = 134
Maximum spectrum frequency, kHz	FS _{max} = 117	Average band frequency at the -3 dB level, kHz	FS _c = 115
Relative frequency band at the -3 dB level, %	PS _{3dB} = 34	Average compound band frequency at the -3 dB level, kHz	FS _g = 113